Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.В.01.01 ПРОФЕССИ	ЮНАЛЬНЫЙ МОДУЛЬ							
	Анализ работоспособност	и элементов машин в САЕ-							
_	сре	едах							
	наименование дисциплины (модуля) в соответствии с учебным планом								
Направ	вление подготовки / специальн	ость							
	15.03.05 Конструкторско-т	ехнологическое обеспечение							
Напран	вленность (профиль)								
	15.03.05 Конструкторско-т	ехнологическое обеспечение							
	машиностроител	ьных производств							
Форма	а обучения	очная							
Год на	бора	2022							

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
К. Т. Н	, доцент, Колбасина Н. А.
ПО	тучость инишиэлы фэмилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Целью изучения дисциплины является: обеспечение базы теоретической подготовки будущим проектировщикам в области прикладной механики деформируемого твердого тела и основ моделирования инженерных задач в современных конечно-элементных пакетах, необходимой для изучения дальнейших дисциплин и для практической деятельности инженеровпроектировщиков.

1.2 Задачи изучения дисциплины

Задачей изучения дисциплины является: приобретение и развитие знаний, умений и навыков, позволяющих овладеть теоретическими методами расчетов на прочность и устойчивость элементов конструкций и машин, использовать программные продукты для решения практических задач..

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине
ПК-3: Способен обеспечить тех	кнологичность конструкцию деталей
машиностроения средней слож	кности
ИД-1.ПК-3: Способен	
выявлять нетехнологичные	
элементы конструкций	
деталей машиностроения	
средней сложности,	
разрабатывать предложения	
по повышению	
технологичности конструкций	
деталей машиностроения	
средней сложности	
ИД-2.ПК-3: Способен	
рассчитывать основные	
показатели количественной	
оценки технологичности	
конструкции деталей	
машиностроения средней	
сложности, и	
вспомогательные показатели	
количественной оценки	
технологичности конструкции	
деталей машиностроения	
средней сложности	

ИД-3.ПК-3: Способен	
оценивать предложения по	
повышению технологичности	
конструкции деталей	
машиностроения, внесенные	
специалистами более низкой	
квалификации	

ПК-7: Способен разработать с использованием CAD-, CAPP-систем технологические процессы изготовления машиностроительных изделий средней сложности

ИД-3.ПК-7: Способен	
использовать САРР-системы	
для разработки маршрутных и	
операционных	
технологических процессов,	
поиска типовых	
технологических процессов и	
технологических процессов -	
аналогов изготовления	
машиностроительных изделий	
средней сложности,	
использовать САРР-системы	
для расчета припусков и	
промежуточных размеров на	
обработку поверхностей	
машиностроительных изделий	
средней сложности,	
использовать САРР-системы	
для определения	
технологических	
возможностей стандартных	
средств технологического	
оснащения, используемых в	
технологических процессах	
изготовления	
машиностроительных изделий	
средней сложности,	
использовать САРР-системы	
для определения	
технологических	
возможностей стандартных	
контрольно-измерительных	
приборов и инструмента,	
используемых в	
технологических процессах	
изготовления	
машиностроительных изделий	
средней сложности,	
использовать САРР-системы и	
САПР производителей	
режущего инструмента для	
выбора технологических	
режимов технологических	
операций изготовления	
машиностроительных изделий	
средней сложности	
использовать САРР-системы	
для нормирования	
технологических операций	
изготовления	
машиностроительных изделий	
	<u></u>

средней сложности,
использовать САРР-системы
для расчета норм расхода
материалов, инструментов,
энергии в технологических
операциях изготовления
машиностроительных изделий
средней сложности

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется с применением ЭО и ДОТ

URL-адрес и название электронного обучающего курса: https://e.sfu-kras.ru/course/view.php?id=18048 .

2. Объем дисциплины (модуля)

		C	ем
Вид учебной работы	Всего, зачетных единиц (акад.час)	1	2
Контактная работа с преподавателем:	3 (108)		
занятия лекционного типа	1 (36)		
практические занятия	2 (72)		
Самостоятельная работа обучающихся:	2 (72)		
курсовое проектирование (КП)	Нет		
курсовая работа (КР)	Да		
Промежуточная аттестация (Зачёт) (Экзамен)	1 (36)		

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

			Контактная работа, ак. час.						
			Занятия		тия семин	Самостоятельная			
№ п/п	Модули, темы (разделы) дисциплины	лекционного типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа, ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Br	ведение в дисциплину								
	1. Предмет и задачи дисциплины. Основные понятия и определения. Суть метода конечных элементов. Обзор функционала САЕ-сред на примере модуля SolidSimulation программного комплекса SolidWorks	6							
	2. Изучение теоретического материала							4	
	3. Создание моделей для исследования			12					
	4. Подготовка к защите лабораторной работы							2	
	5. Основы тензорного анализа, инварианты	4							
	6. Изучение теоретического материала							2	
2. Ha	апряженно-деформируемое состояние		•	•			•	•	
	1. Принципы геометрического описания среды, ее свойства. Создание 3-D модели, этапы и принципы разбиения на конечно-элементную сетку. Оценка качества сетки. Выбор конечного элемента.	4							

	1	, , , , , , , , , , , , , , , , , , ,		1	
2. Изучение теоретического материала				2	
3. Создание моделей для исследования		8			
4. Подготовка к защите лабораторной работы				2	
5. Объемное напряженно-деформируемое состояние (НДС). Расчетная схема конструкции	4				
6. Изучение теоретического материала				2	
7. Расчет кривой деформации напряжения для моделирования нелинейных свойств материала		8			
8. Подготовка к защите лабораторной работы				2	
9. Исследование влияния степени жесткости граничных условий на компоненты решения		8			
10. Подготовка к защите лабораторной работы				2	
3. Материал модели. Граничные условия					•
1. Свойства и модели материалов, механические характеристики, библиотеки	2				
2. Изучение теоретического материала				1	
3. Узловые степени свободы и ограничения. Моделирование граничных условий и нагрузок, возможности интерфейса. SolidSimulation	2				
4. Изучение теоретического материала				1	
5. Исследование различных способов приложения нагрузки. Анализ полученных результатов		2			
6. Подготовка к защите лабораторной работы				1	
7. Моделирование одноосного, плоского и пространственного НДС на основе простейших деталей. Анализ результатов		4			
8. Подготовка к защите лабораторной работы				1	

9. Расчет НДС блочных конструкций различных сечений. Сравнительный анализ решений		4		
10. Подготовка к защите лабораторной работы			1	
4. Основные расчетные задачи. Моделирование контакта				
1. Задачи Сен-Венана, основные допущения. Задача растяжения-сжатия. Кручения. Пример расчета в SolidSimulation	2			
2. Изучение теоретического материала			1	
3. Задачи Сен-Венана, основные допущения. Задача кручения. Расчетная модель. Пример расчета в SolidSimulation	2			
4. Изучение теоретического материала			1	
5. Моделирование задачи кручения на примере вала зубчатой передачи		4		
6. Подготовка к защите лабораторной работы			1	
7. Задачи Сен-Венана, основные допущения. Задача изгиба. Расчетная модель. Пример расчета в SolidSimulation	1			
8. Изучение теоретического материала			2	
9. Моделирование задачи изгиба строительных балок		2		
10. Подготовка к защите лабораторной работы			2	
11. Моделирование взаимодействия деталей в сборке. Различные типы контакта	1			
12. Изучение теоретического материала			2	
13. Моделирование посадки с натягом на примере подшипника		4		
14. Подготовка к защите лабораторной работы			4	

	1		_	1	T 1	1		Ι
15. Моделирование контакта в зубчатом зацеплении			4					
16. Подготовка к защите лабораторной работы							4	
5. Оценка работоспособности и определение основных харак	геристик	констру	кции					
1. Использование результатов исследования для оценки работоспособности конструкции, предельные напряжения, запас прочности, допустимые перемещения	1							
2. Изучение теоретического материала							4	
3. Обобщенный закон Гука с учетом температурных деформаций. Температурное расширение при ограничениях	1							
4. Изучение теоретического материала							4	
5. Комбинированные нагрузки. Температурные нагрузки в структурном анализе	2							
6. Изучение теоретического материала							4	
7. Анализ распределения тепловых потоков при неравномерном нагреве с помощью температурного анализа			4					
8. Подготовка к защите лабораторной работы							4	
9. Использование частотного анализа для определения спектра резонансных частот	2							
10. Изучение теоретического материала							4	
11. Определение спектра собственных частот вала при различных граничных условия. Анализ полученных результатов			4					
12. Подготовка к защите лабораторной работы							4	
13. Модификация характеристик системы для уменьшения влияния вибрации	2							

14. Изучение теоретического материала				4	
15. Вычисление максимальной реакции в установившемся состоянии, вызванной гармоническими нагрузками		4			
16. Подготовка к защите лабораторной работы				4	
Всего	36	72		72	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Алямовский A. A. SolidWorks / CosmosWorks. Инженерный анализ методом конечных элементов: научное издание(Москва: ДМК Пресс).
- 2. Колбасина Н. А. Конечно-элементный анализ деталей и систем: учеб.-метод. пособие [для студентов направления 230100 «Информатика и вычислительная техника», профиль 230100.62.06 «Системы автоматизированного проектирования в машиностроении»](Красноярск: СФУ).
- 3. Гинзбург Е. Г., Голованов Н. Ф., Фирун Н. Б., Халебский Н. Т., Гинзбург Е. Г. Зубчатые передачи: справочник(Ленинград: Машиностроение, Ленингр. отд-ние).
- 4. Заболеева-Зотова А. В., Камаев В. А. Лингвистическое обеспечение автоматизированных систем: учеб. пособие(Москва: Высшая школа).
- 5. Сегерлинд Л. Д., Шестаков А. А., Победри Б. Е. Применение метода конечных элементов: руководство(Москва: Мир).
- 6. Колбасина Н. А. Функционально-физический анализ объектов: учеб.-метод. пособие [для студентов направления 151900 «Конструкторско-технологическое обеспечение машиностроительных производств», 151900.68.09 «Автоматизированное машиностроение»](Красноярск: СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

- 1. SolidWorks 2009 или старше с предустановленным модулем Simulation
- 2. Microsoft Office 2007 или старше
- 3. Windows 7 или старше
- 4. Информационная обучающая система СФУ e.sfu-kras.ru

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Сайт библиотеки СФУ www.bik.sfu-kras.ru

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Лекционная аудитория, оснащенная универсальной маркерной доской и проектором

Класс персональных компьютеров для проведения лабораторных занятий